Web-based responsive document annotation tool
activeannoservice / annotationdefinition.generator.documenttarget / TagSetDocumentTargetUpdatableGeneratorModel
class TagSetDocumentTargetUpdatableGeneratorModel :
UpdatableAnnotationGenerator
Generic updatable AnnotationGenerator for TagSetAnnotationDefinition and DocumentTarget.
Name | Summary |
---|---|
<init> | Generic updatable AnnotationGenerator for TagSetAnnotationDefinition and DocumentTarget.TagSetDocumentTargetUpdatableGeneratorModel(id: String , annotationDefinitionID: String , name: String , description: String , predictUrl: String , updateUrl: String , optimizeUrl: String ? = null, httpAuthentication: HttpAuthentication = HttpAuthentication.None, testSize: Double = 0.0, startThreshold: Int , updateThreshold: Int , dataFilter: FilterCondition , versions: MutableList < UpdatableAnnotationGeneratorVersion > = mutableListOf(), input: AnnotationStepKey , finalizeCondition: FinalizeCondition = FinalizeCondition.Always, createdTimestamp: Long = System.currentTimeMillis()) |
Name | Summary |
---|---|
httpAuthentication | var httpAuthentication: HttpAuthentication |
optimizeUrl | Url to call for optimizing a model, e.g. hyperparameter tuningvar optimizeUrl: String ? |
predictUrl | Url to get predictions fromvar predictUrl: String |
testSize | var testSize: Double |
updateUrl | Url to call for updating the modelvar updateUrl: String |
Name | Summary |
---|---|
generateAnnotation | suspend fun generateAnnotation(document: Document , generatedAnnotationData: GeneratedAnnotationData ): DocumentTargetAnnotation |
generateAnnotationBulk | Open function to generate annotations in bulk, might be more efficient. By default, just iterates through documentsWithGeneratedAnnotationData and calls generateAnnotation for each. Can be overwritten to implement true bulk behavior.suspend fun generateAnnotationBulk(documentsWithGeneratedAnnotationData: List < Pair < Document , GeneratedAnnotationData >>): Map < Document , DocumentTargetAnnotation > |
optimize | Optionally, subclasses can implement optimize to optimize e.g. hyperparameters of a ML modelsuspend fun optimize(data: Map < Document , List < AnnotationResult >>): Unit |
update | Implement this for updating the annotation generator given the versionsuspend fun update(version: UpdatableAnnotationGeneratorVersion , data: Map < Document , List < AnnotationResult >>): Unit |
updateModel | Call this to update the mutable fields of an AnnotationGeneratorfun updateModel(newAnnotationGenerator: AnnotationGenerator ): Unit |